Modulation of *Dio1* gene expression by edible mushrooms extracts in normo- and hypercholesterolemic mice

Alicia Gil-Ramírez¹, Víctor Caz², Roberto Martín-Hernández³, Francisco R. Marín¹, Carlota Largo², Arantxa Rodríguez-Casado³, María Tabernero², Guillermo Reglero¹, Cristina Soler-Rivas¹

¹Department of Production and Characterization of Novel Foods, CIAL – Research Institute in Food Science (UAM+CSIC), C/ Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain.

²Department of Experimental Surgery, Research Institute Hospital La Paz (IdiPAZ), Paseo de la Castellana 261, 28046 Madrid, Spain.

³IMDEA Food Institute. Pabellón Central del Antiguo Hospital de Cantoblanco (Edificio nº 7), C/ deCantoblanco nº 8, 28049 Madrid, Spain.
Cholesterol
Functional foods

Endogenous synthesis

Exogenous absorption

β-sitosterol

DMMs

β-glucans

SREBP2

Bile acids

LXR

SCFA

Regulated by genes involved in...

...cholesterol metabolism pathways

...inflammatory metabolism response

...thyroid metabolism

---High LDL levels are associated with hypothyroidism

Source: DOI-10.1039/C4RA09397F
Thyroid hormones

- Upregulate LDLR mRNA, the transcript of LDL receptor
 Lower cholesterol levels in serum

- T3 (triiodothyronine) is a potent mediator of APOA1 gene expression
 Hypothyroidism ----lower plasma APOA1 levels
 Hyperthyroidism---higher plasma APOA1 levels

Source: http://www.pace-cme.org
Source: http://www.doctormelgar.com/
Organs involved in thyroid system and function control

D1- a selenoprotein named type 1 iodothyronine deiodinase

Dio1 mRNA expression

- liver, kidney, thyroid, pituitary gland, or intestine
- liver, kidney and intestine

Source: http://bloomingtonthyroidproblemsandhealth.com/
High-fat diet

- Higher levels of T3 and T4
- Upregulation of LDLR mRNA
- Lower TC, TG and LDL levels

Higher thyroid activity

Higher Dio1 mRNA liver expression

Higher enzymatic activity

Selenium deficient conditions

Other related selenoproteins

Glutation peroxidase (GPX3)

Se-fortified mushrooms

- No changes in cholesterol-related gene expression patterns in comparison with non-fortified mushrooms
- No modifications in selenoproteins expression of Se-fortified samples related to control

Cultivation substrates with sodium selenite

Mushroom extracts — Hypcholesterolemic extracts

High-fat diet — Dio1 gene expression

Modulation of cholesterol-related gene expression — Thyroid metabolism regulation
Experimental

Biological material and extracts preparation

Water extraction → Water soluble polysaccharides Eritadenine
Supercritical fluids → Sterols enriched fraction

Hot water extraction → β-Glucans enriched fraction
Ethanol precipitation

Food product preparation

Lard + PE BE SE → PEL BEL SEL BSPEL
Animal and diets

- **C57BL/6JRj mice**

Males

- 5 weeks old

DIETS

- Standard (ND) — Safe Rodent diet A04
- High-cholesterol diet (HCD) — cholesterol and cholic acid
 - HCD + lard (HCDL)
 - HCD + extracts
- HCD + functionalized lard (extracts + lard)
- Ezetimibe and simvastatin — drug controls

FEEDING EXPERIMENTS

- **EXPERIMENT 1**
 - ND (control)
 - ND + PE
 - HCD

- **EXPERIMENT 2**
 - HDC control
 - HDC

- **EXPERIMENT 3**
 - HCD control
 - HCD + L/PEL/BEL/SEL/BSPEL

No modifications
Biochemical analysis

Liver, jejunum, ileum and cecum

Real-time PCR

Stored at -80ºC

RNA extraction

Gpx3 and Dio1 mRNA expression

No gene modulation

OMICS International

Indo-Global Summit and Expo on Food & Beverages
Results

Modulation of selenoproteins gene expression in normocholesterolemic mice

EXPERIMENT 1

Similar inhibition effects for PE extracts and high-cholesterol diet

Significant values compared with normocholesterolemic standard diet as control
Water-soluble polysaccharide

Inhibition of normal thyroid metabolism:

Less T4 \rightarrow T3

Similar effect than hypothyroidism state

Higher cholesterol serum levels

Induction of hypercholesterolemic condition?

Post-transcriptional hypocholesterolemic effect of PE extracts leads a compensatory mechanism modulating some gene expressions ($Hmgcr$, $Fdft1$, or $ApoB$)

Hypercholesterolemic effect

PE < HCD

Hypercholesterolemic mice?
Modulation of selenoproteins gene expression in hypercholesterolemic mice

Relative mRNA expression of Dio1 gene

<table>
<thead>
<tr>
<th>Log10(RQ)</th>
<th>Liver</th>
<th>Jejunum</th>
<th>Ileum</th>
<th>Cecum</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- PE extract
- BE extract
- SE extract
- ERG

Significant values compared with hypercholesterolemic HCD as control

BE extract

Ileal gene regulation (cholesterol-related and Dio1 genes) direct the effect of BE to a hypercholesterolemic state but... on contrary, blood TC, TG and LDL levels decreased

- BE ≈ PE

SBE extract

No modulatory effect on ileal Dio1

PE extract

Water-soluble polysaccharides

HYPERCHOLESTEROLEMIC mice

NORMOCHOLESTEROLEMIC mice

Influence of other metabolic pathways

EXPERIMENT 2

HDC

HDC + PE/BE/SE/SBE

4 weeks

4 weeks
Modulation of selenoproteins gene expression in hypercholesterolemic mice

Relative mRNA expression of Dio1 gene

Significant values compared with hypercholesterolemic HCD as control

SE extract

Prev. results: LDLR mRNA expression

In vitro Intestinal tissues

In vivo Liver

Dio1 results:

Jejunum gene expression modulation

No ergosterol influence

SE concentration-dependent

Other fungal sterols
Modulation of selenoproteins gene expression in mice fed a hypercholesterolemic diet

EXPERIMENT 3
HCD control
HCD + L/PEL/SEL/BSPEL
4 weeks

Relative mRNA expression of Dio1 gene
No significant differences on Dio1 gene modulation by extracts and HCDL
Significant values compared with normocholesterolemic HCD as control
Lard influence on extracts bioaccessibility
No synergistic effects
Hypocholesterolemic effect at post-transcriptional levels

All extracts are able to decrease Dio1 gene expression in liver, jejunum and cecum
All supplemented food reduced serum cholesterol levels
Conclusion

PE and BE extracts
Down-regulate $Dio1$ gene expression in several tissues

SE extracts
Up-regulate $Dio1$ gene expression in several tissues

Both influence expression of $Dio1$ (thyroid metabolism)

They should be taken into consideration when designing hypocholesterolemic functional foods

Although the matrix in which these extracts are integrated might avoid the influence
Thank you for your attention

Alicia Gil Ramírez
Alicia.gil@uam.es